NASA Technical Paper 1036

Experimental Flow Coefficients of a Full-Coverage Film-Cooled-Vane Chamber

Peter L. Meitner and Steven A. Hippensteele

SEPTEMBER 1977

NASA Technical Paper 1036

Experimental Flow Coefficients of a Full-Coverage Film-Cooled-Vane Chamber

Peter L. Meitner
Lewis Directorate,
U.S. Army Air Mobility R&D Laboratory
and
Steven A. Hippensteele
Lewis Research Center
Cleveland, Ohio

Scientific and Technical Information Office

1977

EXPERIMENTAL FLOW COEFFICIENTS OF A FULL-COVERAGE FILM-COOLED-VANE CHAMBER

by Peter L. Meitner and Steven A. Hippensteele

Lewis Research Center and U.S. Army Air Mobility R&D Laboratory

SUMMARY

Ambient- and elevated-temperature flow tests were performed on a four-times-actual-size model of an impingement- and film-cooled chamber (full-coverage film cooling) of a core engine turbine vane. Flow tests were conducted in a tunnel with the impingement and film cooling plates combined as a chamber and with the impingement plate removed from the film cooling plate. These tests were conducted at ambient- and elevated-temperature conditions with main-stream gas flow Mach numbers from 0 to 0.95. Coolant supply pressures and temperatures ranged from ambient to 68.5 N/cm² and 787 K (99.3 psia and 956° F), respectively. Main-stream gas flow pressures and temperatures ranged from ambient to 50.8 N/cm² and 1150 K (73.7 psia and 1610° F), respectively. Further ambient bench tests were conducted with the separated impingement and film cooling plates over pressures ranging from 10.2 to 29.7 N/cm² (14.8 to 43.1 psia).

The flow through the impingement holes was treated in terms of a discharge coefficient ($\mathrm{CD_i}$), and the flow through the film cooling holes into still air (no main-stream gas flow) was treated in terms of a total-pressure-loss coefficient ($\mathrm{KT_{nmg}}$). The effects of main-stream gas flow on the flow through film cooling holes were expressed as a function of the coolant to main-stream gas momentum flux ratio.

For measured data used directly, both the impingement discharge coefficient $\mathrm{CD}_{\mathbf{i}}$ and the film cooling total-pressure-loss coefficient for flow into still air $\mathrm{KT}_{\mathrm{nmg}}$ showed appreciable data scatter. A smoothing technique was developed to identify and reduce measurement scatter. Measured data were plotted against an appropriate correlating parameter that reduced the data to a form easily fitted by a polynomial curve. Values of weight flow for the flow coefficient calculations were obtained from the corresponding correlation curves.

For given supply and downstream pressures across each plate, the impingement flow was reduced by the presence of the downstream film cooling plate, but the film cooling flow was not affected by the presence of the upstream impingement plate.

INTRODUCTION

Full-coverage film cooling is a very effective scheme for protecting turbine components from the hostile operating environment of high main-stream gas temperature and pressure. Compressor discharge cooling air is first impinged on the inside of the vane or blade shell to remove heat by convection. The cooling air is then bled out through a large number of evenly distributed holes in the vane or blade outer surface. The coolant forms a continuous, relatively cool, insulating layer between the outer surface and the hot main-stream gas. Full-coverage film cooling (FCFC) permits increased engine operating temperatures and pressures for greater overall cycle efficiency (lower specific fuel consumption) while keeping required coolant flow rates at acceptable levels.

In designing FCFC hardware, it is essential that the flow and distribution of cooling air within a vane or blade be known accurately. This requires the experimental determination of flow coefficients for coolant flow through closely spaced impingement and film cooling plates. Such flow coefficients are expressed either as a discharge coefficient CD or as a total-pressure-loss coefficient KT, the choice of parameter usually being determined by the flow geometry. Both coefficients can be found in the literature (refs. 1 to 6). Reference 1 establishes flow coefficients for multiholed orifice plates in a circular conduit, and references 2 and 3 establish flow coefficients for varied cooling configurations such as leading-edge impingement, impingement with crossflow, flow through film cooling holes, and trailing-edge ejection. Reference 4 examines the effect of approach flow inclined to the orifice axis, and reference 5 establishes flow coefficients for film cooling holes discharging into main-stream gas flow at several Mach numbers. Reference 6 presents data that attempt to isolate the effects of main-stream gas flow on the flow through film cooling holes.

Despite numerous flow coefficient experiments, no investigators have combined impingement and film cooling geometries in a manner resembling full-coverage film cooling. Furthermore, few investigations have been performed that clearly isolate the effects of main-stream gas flow on the flow through film cooling holes. The experimental flow tests described herein were designed to provide this information for a particular geometry. Tests were performed on a four-times-actual-size model of a typical FCFC vane geometry to determine flow coeffficients for impingement and film cooling holes. Furthermore, the effects of main-stream gas flow on the flow through film cooling holes were established for a broad range of coolant flow and main-stream gas Mach numbers. Tests were conducted in a tunnel with main-stream gas Mach numbers between 0 and 0.95 at coolant temperatures from ambient to 787 K (956° F). The impingement and film cooling plates were also tested separately in ambient bench tests. Coolant flow Reynolds numbers for the impingement and film cooling plates ranged from 5000 to 90 000 and 2000 to 38 000, respectively. These values bracket the range of Reynolds numbers for an actual-size, high-temperature vane or blade design, which vary from 19 000 to 78 000

for the impingement holes and from 13 000 to 32 000 for the film cooling holes.

Flow coefficients can be expressed as a function of either Reynolds number or Mach number. Reference 7 discusses the applicability of each parameter for given flow situations. While no general rule is established, it is pointed out that, for discharge coefficients, the Reynolds number may be the suitable correlating parameter at low velocities but the Mach number may be necessary for high-velocity flows. The test data were analyzed in terms of both Reynolds number and Mach number. Both parameters gave approximately the same amount of data scatter, but using Mach number allowed a smoothing technique to be used that identifies and helps reduce flow measurement data scatter. The flow characteristics through the impingement and film cooling holes (for no main-stream gas flow) were therefore described as functions of Mach number in terms of a discharge coefficient and a total-pressure-loss coefficient, respectively. The effects of main-stream gas flow on the flow through film cooling holes were expressed in terms of the coolant to main-stream gas momentum flux ratio.

APPARATUS

Flow tests were conducted in a flat-plate heat transfer tunnel with a film cooling plate alone and with a film cooling plate and an impingement plate combined to form a chamber. In addition, bench tests were conducted with the individual impingement and film cooling plates. The tunnel is illustrated in figure 1. The test section is 9.86 centimeters (3.88 in.) wide and 8.89 centimeters (3.50 in.) high. Vitiated main-stream gas flow can be supplied at pressures to 100 N/cm^2 (150 psia) and temperatures to 1200 K (1700° F); unvitiated cooling air is available to 100 N/cm^2 (150 psia) and 810 K (1000° F).

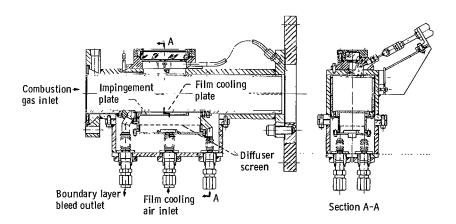


Figure 1. - Combined impingement and film cooling plates (chamber) installed in heat transfer tunnel.

The test-plate, initial boundary-layer thickness is controlled by a bleed slot immediately upstream of the test plate.

The test plates are shown in the combined configuration in figure 2. The impingement and film cooling plates have 6 and 12 rows of holes, respectively. The impingement plate is 0.16 centimeter (0.065 in.) thick and the film cooling plate is 0.47 centimeter (0.185 in.) thick, with an impingement distance of 0.61 centimeter (0.24 in.) between the plates. Hole spacings and hole sizes are shown in figure 2, along with the inclination angles of the film cooling holes. Note that these angles vary from row to row.

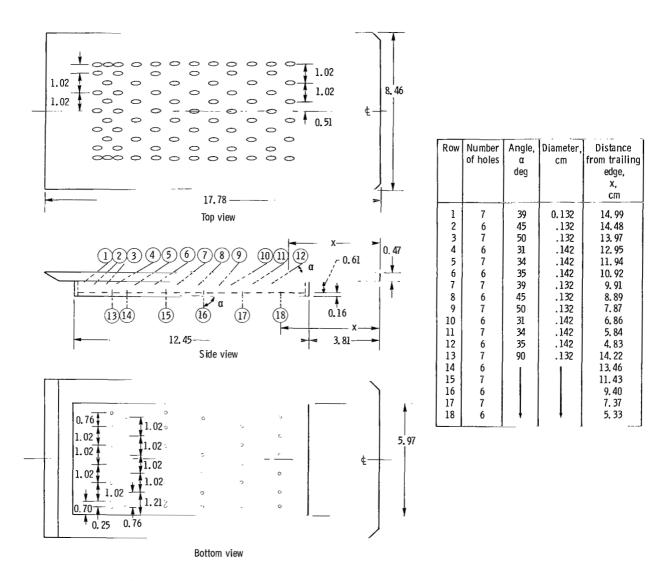


Figure 2. - Combined impingement and film cooling plate configuration. (All dimensions in cm.)

In the modeled vane chamber the hole angles are constant with respect to the chord line. However, because of the curvature of the vane outer surface, the coolant-hole exit angles with respect to the outer surface vary from row to row. All angles are in line with the main-stream gas flow. Several views of the test plates are shown in figure 3.

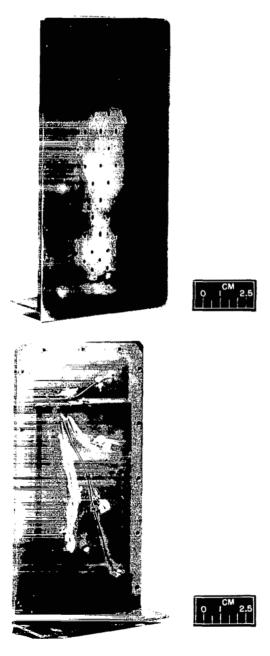


Figure 3. - Combined impingement and film cooling plates.

INSTRUMENTATION

The instrumentation for the tunnel tests is shown in figure 4. Supply and plenum pressure were each measured at three locations. One of the plenum pressure measurements was taken as the reference pressure (indicated in fig. 4). This pressure was measured on a 0- to 69-N/cm² (0- to 100-psig) gage, and all other pressures were obtained by measuring differences from the reference pressure with gages calibrated in inches of water. Two static pressure taps were located on the film cooling plate as shown. Main-stream gas total temperature and pressure were measured upstream of the film cooling plate. The main-stream gas Mach number over the test plate was determined from the rearmost plate static pressure tap and from a total pressure probe just downstream of the plate. The desired main-stream gas Mach number was set (with no cooling airflow) by regulating the supply pressure and a downstream throttling valve. Coolant flow measurements were made with either a 0.5- or 1.0-centimeter- (0.2- or 0.4-in.-) diameter venturi for low and high flow rates, respectively.

Instrumentation for the separated impingement and film cooling bench tests is shown in figure 5. Each plate was mounted in a fixture identical to that used in the combined tunnel tests. Flow rate was measured by an appropriately sized rotameter. Because of the simplicity of the test setup and the directness of the test measurements, the bench test results are considered the most accurate of all the test results.

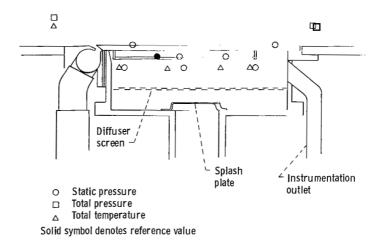


Figure 4. - Tunnel test instrumentation.

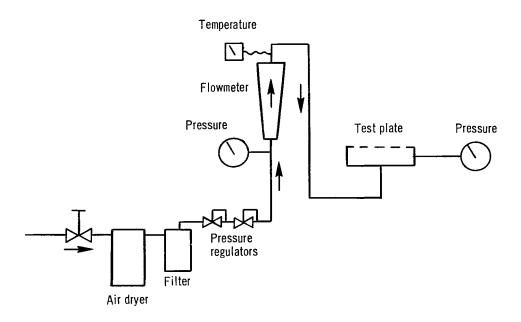


Figure 5. - Bench test instrumentation.

TEST PROCEDURE

The test results are summarized, in 15 groups, in table I. Each group represents a number of runs in which only the coolant supply pressure was varied (except group 13, in which the coolant temperature was also varied). Eight groups of tunnel tests were performed with the combined configuration (impingement and film cooling plates back to back, forming a chamber); five groups were conducted with only the separated film cooling plate. Of the 13 groups of tests performed in the flat-plate tunnel, 10 were at ambient coolant temperature and three at elevated coolant temperature. The two bench tests were performed with the separated impingement and film cooling plates and only at ambient temperature. Tables II to IV list the pertinent test data for all test runs.

ANALYSIS

Figure 6 shows a typical full-coverage-film-cooled chamber discharging into the main-stream gas flow. Station 1 defines the supply conditions, station 2 the impingement orifice plane, station 3 the impingement plenum, and stations 4 and 5 the inlet and outlet of the film cooling holes, respectively. Station 6 defines the static pressure of the main-stream gas flow. It is assumed that the total pressures at stations 1 and 3 are equal to their respective static pressures because of the comparatively low velocities in

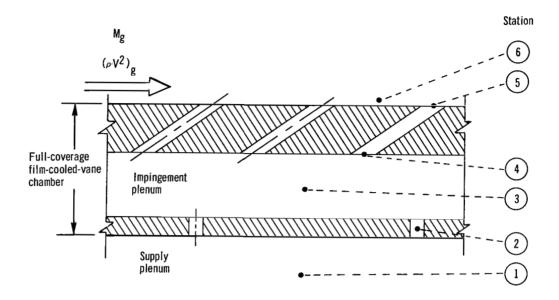


Figure 6. - Full-coverage, film-cooled-chamber station identification.

the supply and impingement plenums. Also, the total temperature is assumed to be constant throughout (no heat transfer taking place).

During the tests, coolant supply and plenum pressures were each measured at three locations and gave almost identical readings. The pressures at these locations were taken to be the average of the three measured pressures. The two static pressure taps on the film cooling plate likewise showed almost identical readings, even for high coolant flow rates. The main-stream gas static pressure at all film cooling holes was thus taken to be the average of the two measured pressures.

Impingement Flow

It is customary (e.g., refs. 2 and 3) to define an impingement orifice discharge coefficient as the ratio of actual to ideal flow by

$$CD = \frac{W_{\text{m}}}{\rho_{2, \text{id}} V_{2, \text{id}} A_{2}}$$
 (1)

where

$$\rho_2$$
, id = $\frac{p_2}{RT_1'} \left(\frac{p_1'}{p_2}\right)^{(\gamma-1)/\gamma}$ (2)

and

$$V_{2, id} = \sqrt{\frac{2\gamma Rg_{c}T_{1}'}{\gamma - 1} \left[1 - \left(\frac{p_{2}}{p_{1}'}\right)^{(\gamma - 1)/\gamma}\right]}$$
(3)

The symbols are defined in appendix A. These formulas require that the impingement jet static pressure p_2 be determined. Since no pressure measurements were made at the orifice plane, an assumption had to be made based on the measured pressures upstream and downstream of the orifice $(p_1'$ and p_3' , respectively). It was assumed that for subsonic flow the static and total pressures at station 2 were equal to the measured pressures p_3' and p_1' , respectively. For choked flow, p_2 was determined from the assumed inlet total pressure p_1' and the compressible flow relations at Mach 1.0.

Film Cooling Flow into Still Air

A total-pressure-loss coefficient is often used instead of a discharge coefficient (ref. 2) to describe the flow through film cooling holes. The incompressible form of the total-pressure-loss coefficient is usually written as

$$KT = \frac{\Delta(p')}{\frac{1}{2g_c} \rho_j V_j^2}$$
(4)

where the change in total pressure is taken from the supply station to a station downstream of a hole. Such a definition, however, couples the flow through the hole with the effects of main-stream gas flow. To isolate the effects of main-stream gas flow and to reflect compressible flow relations, the film cooling hole total-pressure-loss coefficient for flow into still air was defined as

$$KT_{nmg} = \frac{p_3' - p_5'}{p_5' - p_5}$$
 (5)

where p_5 is the static pressure in the film cooling hole at station 5 (equal to measured p_6 for subsonic coolant flow) and p_5^{\prime} is the total pressure at station 5, which was deter-

mined analytically in an iterative manner as the value that satisfied the measured weight flow. For choked flow, p_5 was again determined from the assumed total pressure p_5^{\dagger} and the compressible flow relations.

Film Cooling Flow into Main-Stream Gas Flow

Once the total-pressure-loss coefficient for no main-stream gas flow was established, the effects of main-stream gas flow could be determined. For all tests with main-stream gas flow, the KT_{nmg} correlation was used to determine what the coolant flow would have been for flow discharging into still air at the same supply and back pressures. The effects of main-stream gas flow were then expressed as the measured coolant flow (with main-stream gas flow) divided by the flow determined from the KT_{nmg} correlation (without main-stream gas flow) as a function of the coolant to main-stream gas momentum flux ratio.

DATA SMOOTHING AND RESULTS

Experimentally determined flow coefficients are quite sensitive to measurement errors, as can be seen by the data scatter in references 2 to 5. The customary procedure has been to calculate CD or KT based on measured values and then try to fit a 'best curve' through the results. This procedure is generally unsatisfactory, since the scatter in CD and KT is often so severe that no obvious best curve exists. This is illustrated in figures 7 to 10, which show the impingement flow discharge coefficient and film cooling flow total-pressure-loss coefficient for flow into still air obtained in this manner, plotted against both Mach number and Reynolds number. The data scatter in figures 7 and 8 is typical of that found for discharge coefficients in references 2 to 5. Figures 9 and 10 show greater data scatter than that found for the total-pressure-loss coefficient in reference 2. However, reference 2 uses a different definition of KT, and a direct comparison can thus not be made.

In comparing figures 7 to 10, no obvious advantage can be deduced in plotting the results against Mach number or Reynolds number. Reynolds number plots show that, for all tests, choked flow occurs over a wide range of Reynolds number (solid symbols in figs. 8 and 10). A curve of CD or KT against Reynolds number never brings out physical flow similarity. However, when the results are plotted against Mach number, physical flow similarity occurs for all tests at a common point, this being choked flow at Mach 1.0.

The experimental data of this investigation were thus correlated in terms of Mach number. Furthermore, to overcome the scatter problem, the data were treated in such a way that scatter was identified and smoothed before the data were incorporated into the CD and KT calculations. The details are given in the following subsections.

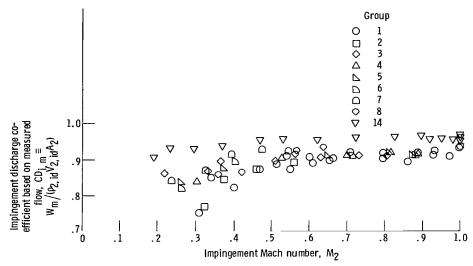


Figure 7. - Impingement discharge coefficient based on measured flow as function of impingement Mach number.

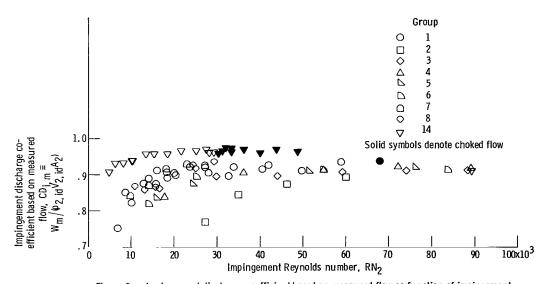


Figure 8. - Impingement discharge coefficient based on measured flow as function of impingement Reynolds number.

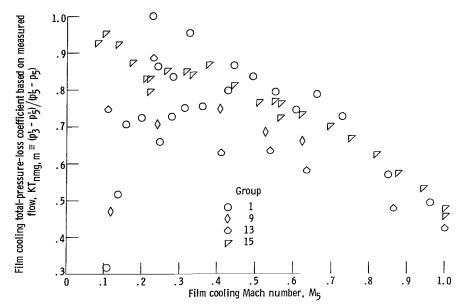


Figure 9. – Film cooling total-pressure-loss coefficient based on measured flow as function of film cooling Mach number.

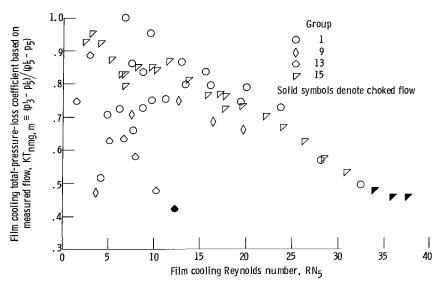


Figure 10. - Film cooling total-pressure-loss coefficient based on measured flow as function of film cooling Reynolds number.

Impingement Flow

Figure 11 shows the nondimensional impingement weight flow function defined by

$$W_{nd, i} = \frac{W_m \sqrt{RT_1'}}{\sqrt{g_c} p_1' A_2}$$
 (6)

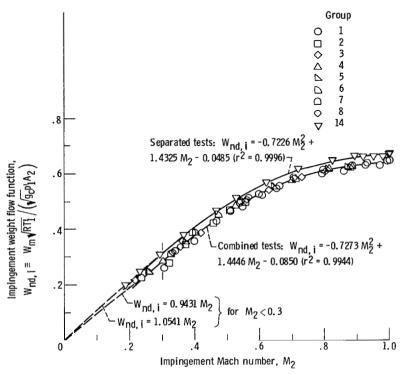


Figure 11. - Impingement weight flow function as function of impingement Mach number (correlated impingement data).

plotted against coolant Mach number. The data of figure 11 fall along two distinct lines. The results of the separated tests form a very well-defined upper line; while the results of the combined tests cluster around a line below the separated test results. The second-order curve-fits through the separated and combined data are shown, along with the goodness of fit (equal to 0.9996 and 0.9944 for the separated and combined tests, respectively). The goodness of fit is defined by

$$r^{2} = 1.0 - \frac{\sum_{i} (y_{i} - y_{equ})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$
 (7)

The data deviation from the curves of figure 11 can be thought of as the amount of data scatter in the basic test measurements. In particular, if the measured pressures are assumed to be correct (correct M_2), the deviations from the curves of figure 11 can be interpreted as errors in flow measurement; and a new, corrected, weight flow can be calculated from the curves of figure 11 for each data point. Using such "smoothed" values of weight flow instead of W_m in equation (1) results in two separate curves of CD_i against M_2 , as shown in figure 12. The flow chart for this procedure is shown in appendix B (fig. 16).

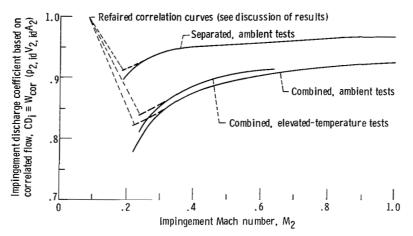


Figure 12. - Impingement discharge coefficient based on correlated flow (from fig. 11) as function of impingement Mach number.

Film Cooling Flow into Still Air

The chosen definition of KT_{nmg} relates p_3^{\prime} , p_5^{\prime} , and p_5 . However, p_5^{\prime} is not measured, and an iteration is required to obtain the value of p_5^{\prime} that makes the calculated value of weight flow equal to the measured weight flow. As such, a plot of the nondimensional, film cooling, weight flow function against coolant Mach number will result in a continuous curve. Data scatter can be identified, however, if the film cooling, weight flow function

$$W_{\text{nd,fc}} = \frac{W_{\text{m}} \sqrt{RT_{3}'}}{\sqrt{g_{\text{c}} p_{3}' A_{5}}}$$
(8)

is plotted against the parameter Z_{fc} , where

$$Z_{fc} = \sqrt{\frac{\rho_5(p_3^{\dagger} - p_5)}{\rho^*(p_3^{\dagger} - p^*)}}$$
 (9)

and ρ^* and p^* are the density and pressure at choking as determined from the total conditions $p_3^{'}$ and $T_3^{'}$. Note that Z_{fc} equals 1.0 at choking. Figure 13 shows $W_{nd,fc}$ plotted against Z_{fc} , along with the ''best curve'' through the data. Again, if the measured pressures are assumed to be correct, the deviation from the line can be thought of as an error in flow measurement, and a new flow rate can be obtained that will make the data fall on the line in figure 13. The resulting curve of KT_{nmg} against M_5 is shown in figure 14. The flow chart for this procedure is shown in appendix B (fig. 17).

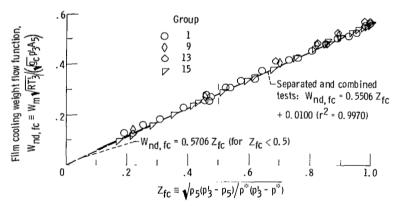


Figure 13. – Film cooling weight flow function as function of parameter $Z_{\rm fc}$ (correlated film cooling data).

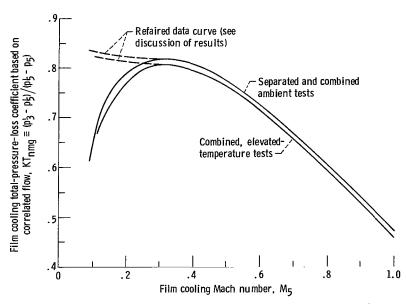


Figure 14. - Film cooling total-pressure-loss coefficient based on correlated flow (from fig. 13) as function of film cooling Mach number.

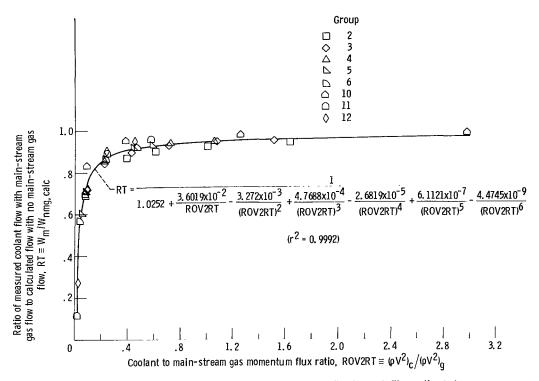


Figure 15. - Effect of main-stream gas flow on coolant flow through film cooling holes.

Film Cooling Flow into Main-Stream Gas Flow

No parameter was found that could be used to smooth film cooling data for test cases with main-stream gas flow. Figure 15 shows the ratio RT of measured coolant flow with main-stream gas flow to calculated coolant flow with no main-stream gas flow W_m/W_{nmg} , calc plotted against the coolant to main-stream gas momentum flux ratio $(\rho V^2)_c/(\rho V^2)_g$. Although data scatter is present, the results follow a fairly well-defined curve. The flow chart for the calculation procedure is presented in appendix B (fig. 18). Note that the calculated flow (for no main-stream gas flow) was based on a refaired curve of KT_{nmg} against M_5 . The refairing is explained in the next section.

DISCUSSION OF RESULTS

Figures 7 to 10 show the curves of CD_i and KT_{nmg} obtained by using measured values directly. The figures show that CD; and KT_{nmg} are sensitive to small variations in measured values, especially at low Mach numbers. The sensitivity at the low Mach numbers is compounded by the fact that the greatest measurement errors occur at low flow rates. The curves of figures 11 and 13 ($W_{nd,\,i}$ against M_2 and $W_{nd,\,fc}$ against Z_{fc} , respectively) are an attempt to identify and reduce the data scatter by drawing a "best curve" through correlated data before they are incorporated into the sensitive ${\rm CD}_{i}$ and ${\rm KT}_{nmg}$ calculations. As such, the shapes of the ''best curves'' in figures 11 and 13 are critical to the final $\mathrm{CD_i}$ and $\mathrm{KT_{nmg}}$ results for low Mach numbers. From an intuitive viewpoint, it is expected that the data in figures 11 and 13 should pass through the origin, since at Mach 0 the flow must equal zero. However, the curve fits in figures 11 and 13 do not pass through the origin, and the shapes of the final ${
m CD}_{
m i}$ and ${
m KT}_{
m nmg}$ curves at low Mach numbers are therefore suspect. The dashed lines in figure 11 are straight-line refairings that blend into the curve fits at Mach 0.3. Note that for the separated tests, this refairing more closely follows the bench test results, which are considered the most accurate of all the flow measurements. Using the refaired curves results in CD; curves that differ slightly from the original curves at the low Mach numbers. The new curves are shown as dashed lines in figure 12.

When the curve of $W_{nd,\,fc}$ against Z_{fc} (fig. 13) was also refaired by a straight line from Z_{fc} of 0 to 0.5 (corresponding to $M_5\approx 0.3$), the shape of the final KT_{nmg} curve was altered significantly at low Mach numbers (dashed line in fig. 14). Again, note that the refaired curve of figure 13 more closely follows the results of the accurate bench tests. It is therefore believed that the results obtained from the refaired correlation curves more accurately reflect the true curves of CD_i and KT_{nmg} . The results of these calculations show that, while the described method of data smoothing is very useful, great care must still be exercised in treating the data at low Mach numbers because

of the sensitivity of the flow coefficients to variations in mass flow in that flow regime.

In the data-smoothing procedures the impingement flow function $W_{nd,\,i}$ was plotted against Mach number, and the film cooling flow function $W_{nd,\,fc}$ was plotted against the parameter Z. The impingement data could also have been smoothed by the parameter Z, but the use of Mach number resulted in a curve that was easier to fit with a polynomial.

The final impingement discharge coefficient and film cooling total-pressure-loss coefficient curves obtained by data smoothing (figs. 12 and 14) show the elevated-temperature results to be slightly different from the ambient results. This difference apparently comes from the fact that, in the elevated-temperature results, thermal expansion of the plates was not accounted for. As the hot coolant flowed through the plates, the hole diameters were expected to increase slightly. When the CD_i and KT_{nmg} calculations were repeated for slightly larger holes, both elevated-temperature results tended toward the ambient curves. The increase in the hole diameter cannot, however, be predicted accurately, since in the short duration of the flow tests, the plates do not reach a uniform temperature. If the increase in hole diameter is calculated on the basis of the maximum temperature difference (hot coolant gas minus ambient conditions), the CD_i and KT_{nmg} results will overcorrect and fall on the other side of the ambient curves of figures 12 and 14.

The calculated impingement discharge coefficients for the combined tests lie between 0.8 and 0.9; for the separated tests they are greater than 0.9 (fig. 12). Most reported discharge coefficients (refs. 2 to 4) lie below 0.9. As such, the calculated values for the separated tests might be questioned. However, there is a difference in geometry between the tests of reference 2 to 4 and this investigation (larger length-diameter ratios in refs. 2 to 4). The geometry of reference 1 comes closest to simulating the geometry of the reported separated tests. Discharge coefficients greater than 0.9 are shown in reference 1, thus giving credence to the reported test results.

Figure 11 and 13 show that, for given supply and downstream pressures, the presence of the downstream film cooling plate reduces the impingement flow and that the presence of the upstream impingement plate has no effect on the flow through the film cooling holes.

SUMMARY OF RESULTS

Ambient- and elevated-temperature flow tests were performed on a four-times-actual-size model of a full-coverage film-cooled segment of a core engine turbine vane. Tests were conducted to establish the flow characteristics through the impingement and film cooling plates combined to form a chamber and with the individual plates separated from each other. The results of the tests are as follows:

- 1. A method was determined to identify and smooth data scatter. The nondimensional weight flow function was plotted against Mach number or the parameter Z, and smoothed values of weight flow were obtained from the generated correlation curve.
- 2. The impingement hole discharge coefficients and film cooling hole total-pressureloss coefficients (for discharge into still air) based on smoothed weight flow correlated very well with coolant hole Mach number.
- 3. The effects of main-stream gas flow on coolant flow rate through the film cooling holes were correlated by the coolant to main-stream gas momentum flux ratio.
- 4. For fixed upstream and downstream pressures across each plate, the impingement flow was reduced by the presence of the downstream film cooling plate; the film cooling flow was not affected by the upstream impingement plate.

Lewis Research Center,

National Aeronautics and Space Administration, and

U. S. Army Air Mobility R&D Laboratory, Cleveland, Ohio, May 16, 1977, 505-04.

APPENDIX A

SYMBOLS

```
hole area, m<sup>2</sup>; ft<sup>2</sup>
Α
CD
        discharge coefficient
D
        diameter, m; ft
        force-mass conversion constant, 1; 32.174 (lbf)(ft)/(lbm)(\sec^2)
g_c
        total-pressure-loss coefficient
KT
M
        Mach number
        pressure, N/m<sup>2</sup>; lbf/ft<sup>2</sup>
p
        ratio of flows, W_m/W_{nmg}, calc
RT
        gas constant, J/(kg)(K); ft-lbf/(lbm)(OR)
R
        Reynolds number, \rho VD/\mu (dimensionless)
RN
r^2
        goodness of fit (defined by eq. (7))
        temperature, K; <sup>o</sup>F
\mathbf{T}
        velocity, m/sec; ft/sec
V
        weight flow, kg/sec; lbm/sec
W
\mathbf{Z}
        parameter used in data smoothing
        angle, deg
\alpha
        ratio of specific heats, C_{v}/C_{v}
γ
```

Subscripts:

ρ

c coolant
calc calculated
cor correlated
equ equation
fc film cooling

density, kg/m³; lbm/ft³

viscosity, kg/(m)(sec); lbm/(ft)(sec)

g main-stream gas

- i impingement id ideal j jet measured m main-stream gas flow mg nd nondimensional nmg no main-stream gas flow 1 station at flow inlet (fig. 6) 2 station at impingement orifice 3 station at impingement plenum 4 station at film-cooling-hole entrance 5 station at film-cooling-hole exit 6 station at main-stream gas flow Superscripts:
- ' total conditions
- * choked conditions
- average

APPENDIX B

COMPUTER FLOW CHARTS

Computer flow charts for the determination of the impingement discharge coefficient CD_i, the film cooling total-pressure-loss coefficient for no main-stream gas flow KT_{nmg}, and the reduction of film cooling flow due to main-stream gas flow RT are shown in figures 16, 17, and 18, respectively. All calculations properly account for choked flow in the impingement or film cooling holes. The required data input is shown, along with the necessary assumptions.

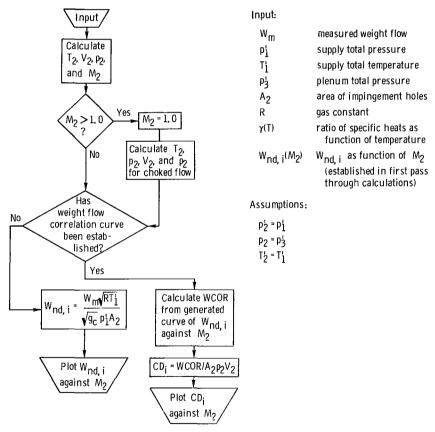


Figure 16. - Flow chart for impingement discharge coefficient determination.

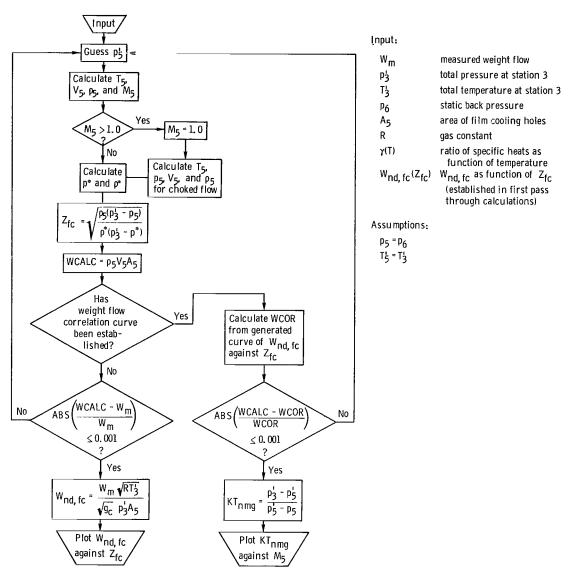
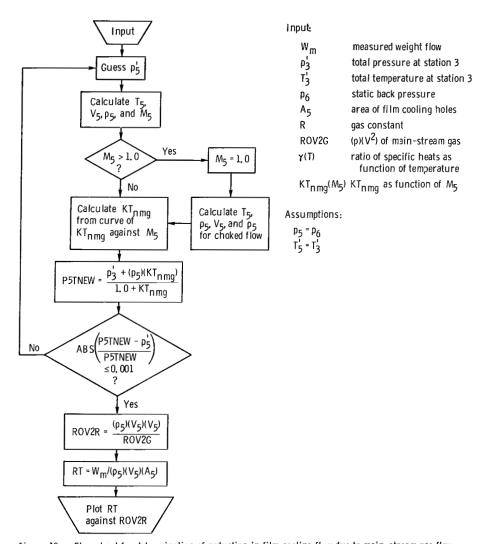



Figure 17. - Flow chart for film cooling total-pressure-loss coefficient determination.

 $Figure~18. \ \hbox{-} Flow~chart~for~determination~of~reduction~in~film~cooling~flow~due~to~main-stream~gas~flow.$

REFERENCES

- 1. Kolodzie, P. A., Jr.; and Van Winkle, M.: Discharge Coefficients Through Perforated Plates. AICHE Journal, vol. 3, no. 3, 1957, pp. 305-312.
- 2. Damerow, W. P.; et al.: Experimental and Analytical Investigation of the Coolant Flow Characteristics in Cooled Turbine Airfoils. (GE R72AEG165, General Electric Co., NAS3-13499.), NASA CR-120883, 1972.
- 3. Hippensteele, Steven A.: Pressure-Loss and Flow Coefficients Inside a Chordwise-Finned, Impingement, Convection, and Film Air-Cooled Turbine Vane.

 NASA TM X-3028, 1974.
- 4. Rohde, John E.; et al.: Discharge Coefficients for Thick Plate Orifices with Approach Flow Perpendicular and Inclined to the Orifice Axis. NASA TN D-5467, 1969.
- 5. Smith, M. R.; et al.: Film Cooling Effectiveness from Rows of Holes under Simulated Gas Turbine Conditions. ARC CP-1303, Aeronautical Research Council, 1974. (Supersedes ARC-34738.)
- 6. Dewey, Paul E.: A Preliminary Investigation of Aerodynamic Characteristics of Small Inclined Air Outlets at Transonic Mach Numbers. NACA TN 3442, 1955.
- 7. Fluid Meters: Their Theory and Application. Fifth Ed. ASME, 1959.

TABLE I. - TEST GROUPS SUMMARY

Group	Number	Test Plate		Coolant	Main-stream	Main-stream
	of	facility config		temper-	gas	gas nominal
	runs	{	rationa	ature	temperature	Mach
		ĺ				number
1	21	Tunnel	I and FC	Ambient	Ambient	0
2	4					. 2
3	6					. 4
4	5					. 6
5	5					. 8
6	4			₩		. 95
7	5			Elevated	Elevated	. 6
8	6		7	Elevated	Elevated	. 8
9	5		FC	Ambient	Ambient	0
10	4					. 2
11	4					. 5
12	4			₩		. 9
13	7	*	🕴	Elevated		0
14	23	Bench	1	Ambient		
15	25	Bench	FC	Ambient	* [

^aI denotes impingement; FC denotes film cooling.

TABLE II. - COMBINED TUNNEL TESTS

Group	Run		ed weight			Supply	y total	Plenun	SINED total	Static		1	-stream	Main-	Paramet	er $(\rho V^2)_g$
		flow	, w _m	pressur	re, p¦	tempera	ture, T'1	pressu	re, p'3	pressu	re, p ₆	_	ow total	stream	ł	1
		kg/sec	lbm/sec	N/cm ²	psia	к	o _F	N/cm ²	psia	N/cm ²	psia	tempera	ture, T ₆	gas	kg/(m)(hr2)	lbm/(ft)(hr ²
		116/000	Din, see	11,011	psia			N/CIII	psia	N/CIII	psia	K	o _F	Mach number,	ĺ	
												-	1	M _g		
	25.0	0 0100					:					1		_		
1	358 359	0.0103	0.0228	12.31 14.66	17.86 21.26	302 302	84 84	10.29 10.91		9.58				0		
	360	. 0199	. 0439	18.10	26.25	303	85	11.92		9. 49 9. 38						
	361	. 0247	. 0545	21.87		304	87	13. 12		9.29	ı					
	362	. 0308	. 0678	26.93	39.06	305	89	15. 38	22.30	9.55	13. 85					
	374	. 0115	. 0254	13. 18	19.11	296	72	10.73		9.96	l .					
	375 376	.0134	. 0296	14. 12	20.48	296	72	11.00	1 1	9.96						
	377	. 0205	. 0452	16.20 18.71	23.49 27.13	294 294	70 70	11.60 12.33	16 82	9.96	14. 44 14. 43					
	378	. 0239	. 0527	21.48	31. 16	294	69			1	14 43					
	379	. 0297	. 0655	25.86	37.51	293	68	14.84	1							
	380	. 0363	. 0801	31.58	45.80	293	67	17.24	25.00							
	381	. 0430	. 0949		52.86	293	67		28.07							
	382 383	. 0497	. 1095		60.73	292	66	22.01		*						
	384	.0149	. 0329 . 0295		21.52 20.14	293	67	11. 14 10. 89	16. 15 15. 79	9.92	14. 39					
	385	. 0118	. 0260		18.82	1		10.64								
	386	. 0095	. 0209	12.09	17.53			10.40	15.09							
	387	. 0075	. 0165	11.41	16.55			10.22								
- 1	388	. 0065	. 0143	10.96	15.90			10.11	14.67							
	389	. 0051	. 0113	10.71	15.53	*	*	10.02	14. 54		Y			*		
2	330	0.0199	0.0438	39. 38	57. 11	299	78	36.64	53. 14	35.80	51. 92	304	88	0.215	3.025×10 ¹¹	2.033×10 ¹¹
1	331	. 0256	. 0565	40.93	59. 36	299	79	37. 18	53.93	35.88	52.04	303	86	. 214	3.017	2.027
i	332	. 0338	. 0746	44.20	64. 10	299	79	38.24	55. 46	36.08	52.33	304	87	. 213	3.025	2.033
	333	. 0439	. 0968	48.92	70.95	300	80	39.56	57. 40	36. 11	52.37	304	88	. 213	3. 025	2.003
3	335	0.0121	0.0267	30.73	44.57	298	76	29. 74	43. 13	29. 17	42.31	303	86	0. 397	8.359×10 ¹¹	5.617×10 ¹¹
	336	. 02 18	. 0481		48.34				44.09	29.08	42.17	302	84	. 397	8.294	5.573
	337	. 0322	. 0710	37.89	54.95			31.73	46.02	29. 19	42.34	303	86	. 397	8. 337	5.602
	338	. 0433	. 0954		63. 75		∳	33.62	48.76	29. 36	42.59	304	87	. 395	8. 338	5.603
- 1	339	. 0542	. 1195		73.91	*	77	35.71	- 1	29.28	42.46	304	88	. 394	8. 271	5.558
	340	. 0648	. 1428	58.86	85.37	299	79	38. 44	55. 75	29.45	42.71	303	86	. 393	8. 198	5.509
4	342	0.0130	0.0286	25.02	36.29	299	79	23.48	34.06	22.63	32 . 82	306	90	0.607	15.145×10 ¹¹	10. 177×10 ¹¹
- 1	343	. 0264	. 0583		43.89	299	79	25.07	36. 36	22.65	32.85	304	88	. 609	15.221	10.228
	344	. 0401	. 0884		55.80	301	81		40. 15	22.81		306	90	. 609	15.291	10.275
	345 346	. 0528 . 0653	. 1165 . 1440		68. 92 83. 96	301 302	82 84	30. 71 34. 67	44. 54 50. 29	22.81 23.10	33. 08 33. 50	307 306	92 90	. 604 . 602	15.117 15.066	10. 158 10. 124
1	040	. 0000	. 1440	31.03	53.30	302	-	34.01	30.25	23.10	33. 30	300	30			
- 1	348	0.0116	0.0255		37.50	302	83	I	35. 79	23.78	34. 49	307	93		27.555×10 ¹¹	18.516×10 ¹¹
- 1	349	. 0178	. 0392		40.22	302	83	I	36.59	23.70	34. 38	308	94	. 804	27.544	18.509
- 1	350 351	. 0376 . 0557	. 0828 . 1227		54.93	303 304	85	1	41.50	24. 04 24. 00	34.86	308 308	95 95	. 802 . 805	27.532	18.501 18.575
- 1	352	. 0653	. 1439		73.27 85.07	304	88 90	32.81 35.78	47.59 51.90	24. 00	34.81 35.06	308	95		27.643 27.418	18. 424
- 1	-								ł							
	353	0.0103		23.39		304	87	22.30		21.39		308	94		33. 738×10 ¹¹	
	354 355	. 0184 . 0401	. 0406 . 0884	26.30 38.53		304	88		34. 11 39. 82	21.57 21.68		309	96	. 946 . 944	33.871 33.854	22.760 22.749
	356	. 0613	. 1352	55.07		305 306	89 91		48.30	21. 88		308 309	94 96	. 944	33. 854 33. 914	22. 749
ł								- 1	1		i					
	262	0.0139	0.0307		78.55	762	912		75.64	51.04		1146	1603	0.599		20.694×10 ¹¹
	261 260	. 0201	. 0444 . 0571	57.07			937		77.05	51.06 50.84		1146		. 599	30.902	20. 765 20. 994
	259	. 0259	. 0571	59.71 64.04	86.60 92.89	783 786	949 955	53.81 55.15		50.85	1	1145 1148		. 604 . 604	31.242 31.308	21.038
- 1	258	. 0382	. 0842	68.44			956	56.23		50.81		1146		. 608	31.542	21. 195
	ł						l		i	i		i	İ			
	267	0.0155	0.0342		62.48		912	40.01 40.95		37. 69		1143			42.311×10 ¹¹ 40.819	28.432×10 ¹¹ 27.429
	273 272	. 0176 . 0211	. 0389 . 0466	44.66 46.75	64. 77 67. 80	711 718	819	40.95	- 1	38.81 38.63		1148 1149		. 793 . 797	40.819	27. 429
	274	. 0327	. 0721	54.69			811	44. 30		38. 59		1149		. 792	40.770	27. 396
	271	. 0325	. 0716	54.43		731		43.97		38. 49		1148		. 797	41.055	27. 588
	275	. 0388	. 0856	60.15		731		46. 02				1150		. 791		27. 377

TABLE III. - SEPARATED TUNNEL TESTS

Group	Run		ed weight				ım total	Static		Main-stream gas flow total		Main- stream	Paramete	er $(ho V^2)_g$		
		110w,	W _m	pressur	e, p ₃	tempera	ture, T3	pressur	e, p ₆			temperature, T ₆		gas	$kg/(m)(hr^2)$	lbm/(ft)(hr ²)
		kg/sec	lbm/sec	N/cm ²	psia	K	$^{ m o}_{ m F}$	N/cm^2	psia	tempera		gas Mach	rg/(m)(nr)	iom/(ic/(iii)		
'		115/ 500	2011, 500	11,0111	poza	•		11,011	рыш	к	$^{ m o}_{ m F}$	number,				
1							•					Mg				
9	433	0.0056	0.0124	9.97	14. 46	288	59	9.83	14.25			0				
	434	. 0114	. 0252	10.52	15.26	289	61		14.25							
	435	. 0194	. 0427	11.89	17. 25	291	64		14.26							
	436	. 0251	. 0554	13.25	19.22	296	72	,	14.25							
1	437	. 0301	. 0663	14.64	21.23	294	70	9.77	14. 17			Y				
10	439	0.0074	0.0164	30.59	44. 37	290	62	30.44	44. 15	286	54	0.205	2.323×10 ¹¹	1.561×10 ¹¹		
	440	. 0174	. 0383	30.39	44.07	290	62	29.76	43. 16	286	54	.207	2.307	1.550		
	446	. 0327	. 0720	32.28	46.82	285	53	30.25	43.88	284	51	. 204	2.275	1.529		
	443	. 0504	. 1112	34.97	50.72	288	59	30. 12	43.69	285	53	. 203	2.261	1.519		
11	447	0.00086	0.0019	26. 34	38.21	283	49	26.23	38.04	283	50	0.488	11. 315×10 ¹¹	7.603×10 ¹¹		
i	448	. 0123	. 0271	26.92	39.04	277	39	26.27	38. 10	284	51	. 489	11. 377	7.645		
i	449	. 0274	. 0604	28. 31	41.06	278	41	26.34	38.20	284	52	. 488	11. 378	7.646		
1	450	. 0456	. 1005	31.21	45.26	281	45	26.54	38.49	284	52	. 484	11. 253	7.562		
12	454	0.0034	0.0075	20.01	29.02	284	51	19.57	28. 39	287	56	0.847	25.455×10 ¹¹	17. 105×10 ¹¹		
	455	. 0176	. 0387	20.42	29.62		52	18.71	27. 14		56	. 860	25.090	16.860		
	456	. 0352	. 0775	23.21	33. 67		51	18.82	27.29		57	. 859	25. 169	16.913		
	457	. 0515	. 1135	27. 14	39. 37	\ \	51	18.87	27. 37	7 ₩	57	. 856	25.079	16.852		
13	473	0.0037	0.0082	10.04	14. 56	564	555	9.89	14. 35			0	i			
	472	. 0075	. 0166	10.56	15.32	604	628	9.87	14. 32			1				
	471	. 0133	. 0294	11.90	17. 26	632	677	9.83	14. 25	5						
	470	. 0172	. 0380	13. 22	19. 17	642	696	9.80	14.2				:			
i	469	. 0204	. 0450	14.55	21.11	652	714	9.80	14.22	2						
	468	. 0271	. 0598	18.72	27. 15	723	841	9.80	14.2							
	467	. 0319	. 0703	22.04	31.97	732	857	9.73	14. 1	L	l	Ý				

TABLE IV. - SEPARATED IMPINGEMENT AND FILM COOLING BENCH TESTS

(a) Impingement plate; group 14

(b) Film cooling plate; group 15

	ed weight	Supply pressur			y total ture, T	Static b			ed weight , W _m				y total ture, T'3	Static pressur	
kg/sec	lbm/sec	N/cm ²	psia	К	$^{ m o}_{ m F}$	N/cm^2	psia	kg/sec	lbm/sec	N/cm ²	psia	K	$^{\mathrm{o}}\mathrm{_{F}}$	N/cm ²	psia
0.0037	0.0081	10.22	14.83	299	78	9.98	14.47	0.0099	0.0218	10.45	15.15	299	78	9.87	14. 32
. 0047	. 0103	10.36	15.02	298	77	i		. 0103	. 0227	10.49	15.22				
. 0059	. 0131	10.59	15.36	298	76			. 0177	.0391	11. 76	17.06				
. 0076	. 0167	10.96	15.89	297	75	•	:	. 0272	. 0600	14. 11	20.46	- 1	Ì		
. 0076	. 0167	10.96	15.89	296	73	1		. 0157	. 0346	11. 33	16.43		V		
. 0099	. 02 18	11.59	16.81					. 0271	. 0598	14.00	20.30	. 🕴 ı	79		
.0113	. 0249	12.08	17.52			İ		. 0519	. 1145	23. 35	33. 87	300	80	Ý	¥
. 0134	. 0295	12.96	18.80					. 0038	.0084	9. 98	14. 47	301	81	9.89	14.34
. 0158	. 0349	14.11	20.47		,			. 0048	. 0106	10.03	14.55	301	81		
. 0184	. 0406	15.62	22.66	¥	\psi			. 0064	. 0140	10. 14	14. 70	300	80		
. 0202	. 0445	16.79	24. 35	297	75	Ť	¥	. 0082	. 0180	10.29	14. 92				:
. 02 35	. 0518	19.31	28.00	298	77	9.97	14.46	. 0104	. 0229	10.51	15.24				
. 0244	. 0539	20.11	29. 17	299	78	9.97	14.46	. 0125	. 0275	10.81	15.68				
. 0243	. 0536	20.11	29. 17	297	74	9.98	14.47	. 0149	. 0328	11.20	16.25				
. 0243	. 0535	20.11	29. 17	298	76			. 02 10	. 0464	12.48	18. 10				
. 0265	. 0584	21.87	31. 72	299	78			. 0243	. 0535	13.26	19.23	*	¥		
. 0292	. 0644	24.33	35.29	299	78			. 0263	. 0580	13.87	20. 12	301	81		
. 0320	. 0705	I	38. 30	i	79			. 0300	. 0661	14. 99	21.74	301	82		
. 0357	. 0788	29.72	43. 10	300	80	†	V	. 0338	. 0745	16. 31	23.65	302	83		
. 0223	. 0491	18.57	26.93	298	77	10.01	14. 52	. 0367	. 0809	17. 36	25. 18	302	84		
. 02 15	. 0474	17.94	26.02	299	78			. 0403	. 0889	18.75	27. 19	303	85		
. 0206	. 0455	17.29	25.08	299	78			. 0435	. 0960	19.97	28. 97	303	86		
. 0228	. 0502	18.95	27. 49	301	81	🕴	V	. 0473	. 1043	21.58	31. 30	303	86		
		Ì	1					. 0549	. 1211	24.67	35.78	304	87		
								. 0575	. 1268	25.87	37. 52	304	88	*	Y

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.							
NASA TP-1036		E Boost Onto							
4. Title and Subtitle	TOTAL OF A TIME	5. Report Date September 1977							
	EXPERIMENTAL FLOW COEFFICIENTS OF A FULL- COVERAGE FILM-COOLED-VANE CHAMBER								
COVERAGE FILM-COOLED-V	ANE CHAMBER	6. Performing Organization Code							
7. Author(s)	·	8. Performing Organization Report No.							
Peter L. Meitner and Steven A	. Hippensteele	E-9146							
		10. Work Unit No.							
9. Performing Organization Name and Address		505-04							
NASA Lewis Research Center	and	11. Contract or Grant No.							
U.S. Army Air Mobility R&D I	Laboratory								
Cleveland, Ohio 44135		13. Type of Report and Period Covered							
12. Sponsoring Agency Name and Address		Technical Paper							
National Aeronautics and Space	Administration	14. Sponsoring Agency Code							
Washington, D.C. 20546		14. Sponsoring Agency Code							
15. Supplementary Notes									
13. Supplementary Notes									
16. Abstract									
Ambient- and elevated-tempera	ature flow tests were performe	ed on a four-times-actual-size							
_		engine turbine vane. Tests were							
•		ined to form a chamber and also							
		ed tests, the proximity of the film							
cooling plate affected the flow of									
		cient, and the film cooling flow							
discharging into still air with n	o main-stream gas flow is pre	esented in terms of a total-pressure-							
loss coefficient. The effects of	f main-stream gas flow on dis	charge from the film cooling holes							
		mentum flux ratio. A smoothing							
technique is developed that idea									
toomique is developed didt ide	min neips reduce are								
17. Key Words (Suggested by Author(s))	18. Distribution St	atement							
Flow coefficients		Unclassified - unlimited							
Discharge coefficient	STAR Cate								
Film cooling		-0							
r min coornig									
	l l								
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price* 30 A03							

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

National Aeronautics and

Space Administration

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300

> 594 001 C1 U A 770819 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return